
Chase Joyner

901 Homework 1

September 15, 2017

Problem 7

Suppose there are N different types of coupons available when buying cereal; each box contains
one coupon and the collector is seeking to collect one of each in order to win a prize. After buying
n boxes, what is the probability pn that the collector has at least one of each type?

Solution: Let Ak, 1 ≤ k ≤ N , denote the event that the kth coupon was obtained after
buying n boxes. Therefore, we are interested in

P

(
N⋂
k=1

Ak

)
= 1− P

(
N⋃
k=1

Ac
k

)
where Ac

k denotes the event that the kth coupon was not obtained. By the inclusion-exclusion
principle, we know

P

(
N⋃
k=1

Ac
k

)
=

N∑
k=1

P (Ac
k)−

∑
1≤i<j≤N

P (Ac
iA

c
j)+∑

1≤i<j<k≤N
P (Ac

iA
c
jA

c
k)− ...+ (−1)N−1P (Ac

1 · · ·Ac
N ).

First note that P (Ac
1...A

c
N ) = 0 since we must obtain at least one coupon. Next, consider the

following arguments:

P (Ac
i ) =

(
N − 1

N

)n

P (Ac
iA

c
j) = P (Ac

i | Ac
j)P (Ac

j) =

(
N − 2

N − 1

)n(N − 1

N

)n

=

(
N − 2

N

)n

P (Ac
iA

c
jA

c
k) = P (Ac

i | Ac
jA

c
k)P (Ac

jA
c
k) =

(
N − 3

N − 2

)n(N − 2

N

)n

=

(
N − 3

N

)n

and so on. Lastly, since each pair of events, say Ai or AiAj or AiAjAk, etc, are all equally
likely of occurring, the summations can be captured through the choose function. Therefore,

P

(
N⋃
k=1

Ac
k

)
=

(
N

1

)(
N − 1

N

)n

−
(
N

2

)(
N − 2

N

)n

+ ...+ (−1)N
(

N

N − 1

)(
N − (N − 1)

N

)n

=
N−1∑
k=1

(−1)k+1

(
N

k

)(
N − k
N

)n

.
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and hence the probability pn that the collector has at least one of each type is

pn = 1−
N−1∑
k=1

(−1)k+1

(
N

k

)(
N − k
N

)n

.

Problem 16

Suppose B is a σ-field of subsets of Ω and suppose Q : B → [0, 1] is a set function satisfying

(a) Q is finitely additive on B.

(b) 0 ≤ Q(A) ≤ 1 for all A ∈ B and Q(Ω) = 1.

(c) If Ai ∈ B are disjoint and
∑∞

i=1Ai = Ω, then
∑∞

i=1Q(Ai) = 1.

Show that Q is a probability measure; that is, show Q is σ-additive.

Solution: Recall the following lemma from the notes: Suppose µ is a finitely additive set
function on a σ-field B with µ(Ω) = 1. Then if A1 ⊇ A2 ⊇ ... and

⋂∞
n=1An = ∅ implies that

limn→∞ µ(An) = 0, then µ is countably additive. We will use this lemma. First, note that Q
is a finitely additive set function on B and Q(Ω) = 1. Now suppose that A1 ⊇ A2 ⊇ ... and⋂∞

n=1An = ∅. We must show that limn→∞Q(An) = 0. Note that given the set containments,
we have Ac

1 ⊆ Ac
2 ⊆ ... and

⋃∞
n=1A

c
n = Ω. To use property (c) above, consider B0 = ∅ and for

n ≥ 1, Bn = Ac
n \Ac

n−1 (which are disjoint sets). Furthermore,
⋃∞

n=1Bn =
⋃∞

n=1A
c
n = Ω and

so
∑∞

i=1Q(Bi) = 1, by part (c), i.e. limn→∞
∑∞

i=n+1Q(Bi) = 0. Notice also that for any n,( ∞⋃
k=1

Bk

)
\Ac

n ⊆
∞⋃

k=n+1

Bk.

Indeed, if x ∈ (
⋃∞

k=1Bk)\Ac
n, then x ∈

⋃∞
k=1

(
Ac

k \ Ac
k−1
)

and x 6∈ Ac
n. Therefore, given

the set containment of the Ac
k’s, x ∈ Ac

k \ Ac
k−1 for some k ≥ n + 1, i.e. x ∈

⋃∞
k=n+1Bk.

Combining all of this, we have

lim
n→∞

Q(An) = lim
n→∞

Q
(
Ω \Ac

n

)
= lim

n→∞
Q

( ∞⋃
k=1

Bk\Ac
n

)

≤ lim
n→∞

Q

( ∞⋃
k=n+1

Bk

)

≤ lim
n→∞

∞∑
k=n+1

Q(Bk) by sub-additivity

= 0

which shows that Q is countably additive by the lemma.
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Problem 19

Let (Ω,B, P ) be a probability space. Call a set N null if N ∈ B and P (N) = 0. Call a set B ⊂ Ω
negligible if there exists a null set N such that B ⊂ N . Notice that for B to be negligible, it is
not required that B be measurable. Denote the set of all negligible subsets by N . Call B complete
(with respect to P ) if every negligible set is null. Suppose that B is not complete. Define

B? :=
{
A ∪M : A ∈ B,M ∈ N

}
.

(a) Show B? is a σ-field.

Solution: Clearly Ω ∈ B? since Ω = Ω ∪ ∅ and Ω ∈ B, ∅ ∈ N . Let C ∈ B?. Then, there
exists sets A ∈ B and M ∈ N such that C = A ∪M . Since M ∈ N , there exists a set
N ∈ B such that M ⊂ N and P (N) = 0. Consider

Cc = Ac ∩M c = Ac ∩
(
N c ∪

(
M c \N c

))
=
(
Ac ∩N c

)
∪
(
Ac ∩

(
M c \N c

))
.

We know that Ac ∩ N c ∈ B. Notice that Ac ∩ (M c \ N c) ⊂ M c \ N c ⊂ Ω \ N c, and
since N c ⊂ Ω, P (Ω \ N c) = P (Ω) − P (N c) = 0, i.e. Ω \ N c is a null set. Therefore,
Ac ∩ (M c \N c) ∈ N , and so Cc ∈ B?. Now suppose C1, C2, ... ∈ B?. Then there exists
A1, A2, ... ∈ B and M1,M2, ... ∈ N such that Cn = An ∪Mn. Note

∞⋃
n=1

Cn =

( ∞⋃
n=1

An

)⋃( ∞⋃
n=1

Mn

)
.

Clearly
⋃∞

n=1An ∈ B since B is a σ-field. Also, since Mn ∈ N , there exists a null set
On ∈ B such that Mn ⊂ On and P (On) = 0. Therefore,

⋃∞
n=1Mn ⊂

⋃∞
n=1On and by

subadditivity

P

( ∞⋃
n=1

On

)
≤
∞∑
n=1

P (On) = 0,

i.e.
⋃∞

n=1On ∈ B and is null. Therefore,
⋃∞

n=1Mn ∈ N . This shows that
⋃∞

n=1Cn ∈ B?
and hence B? is a σ-field.

(b) Show that if Ai ∈ B and Mi ∈ N for i = 1, 2 and

A1 ∪M1 = A2 ∪M2,

then P (A1) = P (A2).

Solution: Notice that A1 ∪M1 = A2 ∪M2 implies that
(
A1 ∪M1

)
\M2 ⊂ A2, and

so we know A1 \M2 ⊂ A2. Since M2 ∈ N , there exists a null set B2 ∈ B such that
M2 ⊂ B2 and P (B2) = 0. Therefore, we have A1 \ B2 ⊂ A1 \M2 ⊂ A2. Now, consider
by inclusion-exclusion

P (A1 \B2) = P (A1 ∩Bc
2) = P (A1) + P (Bc

2)− P (A1 ∪Bc
2) = P (A1) + 1− 1 = P (A1).

Therefore, we have P (A1) = P (A1 \ B2) ≤ P (A2). Reversing the first step to A1 ⊃(
A2 ∪M2) \M1 gives the result.
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(c) Define P ? : B? → [0, 1] by

P ?(A ∪M) = P (A), A ∈ B,M ∈ N .

Show that P ? is an extension of P to B?.

Solution: Let B ∈ B. Then, P ?(B) = P ?(B∪∅) = P (B). This shows P ? is an extension
of P to B?.

(d) If B ⊂ Ω and Ai ∈ B, i = 1, 2 and A1 ⊂ B ⊂ A2 and P (A2 \A1) = 0, then show B ∈ B?.

Solution: Notice that B = A1 ∪
(
B \ A1

)
. Also B \ A1 ⊂ A2 \ A1 and A2 \ A1 is null.

Therefore, B ∈ B?.

(e) Show B? is complete. Thus every σ-field has a completion.

Solution: Let A ∈ N . Then by definition of P ?,

P ?(∅ ∪A) = P (∅) = 0.

Since A = ∅ ∪A, we have A is a null set in B?. Therefore, B? is complete.

(f) Suppose Ω = R and B = B(R). Let pk ≥ 0 and
∑

k pk = 1. Let {ak} be any sequence in R.
Define P by

P
(
{ak}

)
= pk, P (A) =

∑
ak∈A

pk, A ∈ B.

What is the completion of B?

Solution: Let A ⊂ R. Define the following two sets: G =
{
ak : P

(
{ak}

)
> 0

}
and

B =
{
ak ∈ A : P

(
{ak}

)
> 0
}

. First notice that P (G) = 1 and also

A = B ∪
(
A \B

)
.

Clearly B ∈ B since it can be written as a countable union of measurable sets {ak}.
Also, since A \ B ⊂ Gc and P (Gc) = 0, we have A \ B is a negligible set. Therefore,
A is in the completion of B. Since the set A ⊂ R was arbitrary, this implies that the
completion of B must be the power set of R, i.e. P(R).

(g) Say that the probability space (Ω,B, P ) has a complete extension (Ω,B1, P1) if B ⊂ B1 and
P1|B = P . The previous problem (c) showed that every probability space has a complete
extension. However, this extension may not be unique. Suppose that (Ω,B2, P2) is a second
complete extension of (Ω,B, P ). Show that P1 and P2 may not agree on B1 ∩ B2.

Solution: Let Ω = {1, 2, 3} and consider the σ-field B =
{
∅, {1}, {2, 3},Ω

}
where

P ({1}) = 1/2 and P ({2, 3}) = 1/2. Now, define the extensions B1 = B2 = P(Ω), which
are both complete because the only negligible set is the empty set which is trivially null.
However, if we define the probabilities

P1({1}) = 1/2 P2({1}) = 1/2

P1({2}) = 1/4 P2({2}) = 1/3

P1({3}) = 1/4 P2({3}) = 1/6
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we see that P1 and P2 do not agree on B1 ∩ B2 since, say, P1({2}) 6= P2({2}). Note
that these values were chosen so that P ({1}) = P1({1}) = P2({1}) and also P ({2, 3}) =
P1({2, 3}) = P2({2, 3}), where Pi({2, 3}) = Pi({2}) + Pi({3}) for i = 1, 2.

(h) Is there a minimal extension?

Solution: We will show that (Ω,B?, P ?) is the minimal complete extension. Let
(Ω,B′, P ′) be another complete extension of (Ω,B, P ). Then any set M ∈ N is a null
set in B′, i.e. N ⊂ B′. Also, clearly B ⊂ B′ since B′ is an extension. Now, take any
B ∈ B?, i.e. B = A ∪M where A ∈ B and M ∈ N . Since B ⊂ B′ and N ⊂ B′, we have
A,M ∈ B′ and so too is A∪M . Thus, B ∈ B′ and we conclude that B? ⊂ B′. Therefore,
(Ω,B?, P ?) is the minimal extension.
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