Chase Joyner

901 Homework 1

September 15, 2017

Problem 7

Suppose there are N different types of coupons available when buying cereal; each box contains one coupon and the collector is seeking to collect one of each in order to win a prize. After buying n boxes, what is the probability p_{n} that the collector has at least one of each type?

Solution: Let $A_{k}, 1 \leq k \leq N$, denote the event that the k th coupon was obtained after buying n boxes. Therefore, we are interested in

$$
P\left(\bigcap_{k=1}^{N} A_{k}\right)=1-P\left(\bigcup_{k=1}^{N} A_{k}^{c}\right)
$$

where A_{k}^{c} denotes the event that the k th coupon was not obtained. By the inclusion-exclusion principle, we know

$$
\begin{aligned}
P\left(\bigcup_{k=1}^{N} A_{k}^{c}\right)= & \sum_{k=1}^{N} P\left(A_{k}^{c}\right)- \\
& \sum_{1 \leq i<j \leq N} P\left(A_{i}^{c} A_{j}^{c}\right)+ \\
& \sum_{1 \leq i<j<k \leq N} P\left(A_{i}^{c} A_{j}^{c} A_{k}^{c}\right)-\ldots+(-1)^{N-1} P\left(A_{1}^{c} \cdots A_{N}^{c}\right) .
\end{aligned}
$$

First note that $P\left(A_{1}^{c} \ldots A_{N}^{c}\right)=0$ since we must obtain at least one coupon. Next, consider the following arguments:

$$
\begin{aligned}
P\left(A_{i}^{c}\right) & =\left(\frac{N-1}{N}\right)^{n} \\
P\left(A_{i}^{c} A_{j}^{c}\right) & =P\left(A_{i}^{c} \mid A_{j}^{c}\right) P\left(A_{j}^{c}\right)=\left(\frac{N-2}{N-1}\right)^{n}\left(\frac{N-1}{N}\right)^{n}=\left(\frac{N-2}{N}\right)^{n} \\
P\left(A_{i}^{c} A_{j}^{c} A_{k}^{c}\right) & =P\left(A_{i}^{c} \mid A_{j}^{c} A_{k}^{c}\right) P\left(A_{j}^{c} A_{k}^{c}\right)=\left(\frac{N-3}{N-2}\right)^{n}\left(\frac{N-2}{N}\right)^{n}=\left(\frac{N-3}{N}\right)^{n}
\end{aligned}
$$

and so on. Lastly, since each pair of events, say A_{i} or $A_{i} A_{j}$ or $A_{i} A_{j} A_{k}$, etc, are all equally likely of occurring, the summations can be captured through the choose function. Therefore,

$$
\begin{aligned}
P\left(\bigcup_{k=1}^{N} A_{k}^{c}\right) & =\binom{N}{1}\left(\frac{N-1}{N}\right)^{n}-\binom{N}{2}\left(\frac{N-2}{N}\right)^{n}+\ldots+(-1)^{N}\binom{N}{N-1}\left(\frac{N-(N-1)}{N}\right)^{n} \\
& =\sum_{k=1}^{N-1}(-1)^{k+1}\binom{N}{k}\left(\frac{N-k}{N}\right)^{n}
\end{aligned}
$$

and hence the probability p_{n} that the collector has at least one of each type is

$$
p_{n}=1-\sum_{k=1}^{N-1}(-1)^{k+1}\binom{N}{k}\left(\frac{N-k}{N}\right)^{n} .
$$

Problem 16

Suppose \mathcal{B} is a σ-field of subsets of Ω and suppose $Q: \mathcal{B} \rightarrow[0,1]$ is a set function satisfying
(a) Q is finitely additive on \mathcal{B}.
(b) $0 \leq Q(A) \leq 1$ for all $A \in \mathcal{B}$ and $Q(\Omega)=1$.
(c) If $A_{i} \in \mathcal{B}$ are disjoint and $\sum_{i=1}^{\infty} A_{i}=\Omega$, then $\sum_{i=1}^{\infty} Q\left(A_{i}\right)=1$.

Show that Q is a probability measure; that is, show Q is σ-additive.
Solution: Recall the following lemma from the notes: Suppose μ is a finitely additive set function on a σ-field \mathcal{B} with $\mu(\Omega)=1$. Then if $A_{1} \supseteq A_{2} \supseteq \ldots$ and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ implies that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$, then μ is countably additive. We will use this lemma. First, note that Q is a finitely additive set function on \mathcal{B} and $Q(\Omega)=1$. Now suppose that $A_{1} \supseteq A_{2} \supseteq \ldots$ and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$. We must show that $\lim _{n \rightarrow \infty} Q\left(A_{n}\right)=0$. Note that given the set containments, we have $A_{1}^{c} \subseteq A_{2}^{c} \subseteq \ldots$ and $\bigcup_{n=1}^{\infty} A_{n}^{c}=\Omega$. To use property (c) above, consider $B_{0}=\emptyset$ and for $n \geq 1, B_{n}=A_{n}^{c} \backslash A_{n-1}^{c}$ (which are disjoint sets). Furthermore, $\bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty} A_{n}^{c}=\Omega$ and so $\sum_{i=1}^{\infty} Q\left(B_{i}\right)=1$, by part (c), i.e. $\lim _{n \rightarrow \infty} \sum_{i=n+1}^{\infty} Q\left(B_{i}\right)=0$. Notice also that for any n,

$$
\left(\bigcup_{k=1}^{\infty} B_{k}\right) \backslash A_{n}^{c} \subseteq \bigcup_{k=n+1}^{\infty} B_{k} .
$$

Indeed, if $x \in\left(\bigcup_{k=1}^{\infty} B_{k}\right) \backslash A_{n}^{c}$, then $x \in \bigcup_{k=1}^{\infty}\left(A_{k}^{c} \backslash A_{k-1}^{c}\right)$ and $x \notin A_{n}^{c}$. Therefore, given the set containment of the A_{k}^{c} 's, $x \in A_{k}^{c} \backslash A_{k-1}^{c}$ for some $k \geq n+1$, i.e. $x \in \bigcup_{k=n+1}^{\infty} B_{k}$. Combining all of this, we have

$$
\begin{array}{rlr}
\lim _{n \rightarrow \infty} Q\left(A_{n}\right) & =\lim _{n \rightarrow \infty} Q\left(\Omega \backslash A_{n}^{c}\right)=\lim _{n \rightarrow \infty} Q\left(\bigcup_{k=1}^{\infty} B_{k} \backslash A_{n}^{c}\right) \\
& \leq \lim _{n \rightarrow \infty} Q\left(\bigcup_{k=n+1}^{\infty} B_{k}\right) & \\
& \leq \lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} Q\left(B_{k}\right) & \text { by sub-additivity } \\
& =0 &
\end{array}
$$

which shows that Q is countably additive by the lemma.

Problem 19

Let (Ω, \mathcal{B}, P) be a probability space. Call a set N null if $N \in \mathcal{B}$ and $P(N)=0$. Call a set $B \subset \Omega$ negligible if there exists a null set N such that $B \subset N$. Notice that for B to be negligible, it is not required that B be measurable. Denote the set of all negligible subsets by \mathcal{N}. Call \mathcal{B} complete (with respect to P) if every negligible set is null. Suppose that \mathcal{B} is not complete. Define

$$
\mathcal{B}^{\star}:=\{A \cup M: A \in \mathcal{B}, M \in \mathcal{N}\} .
$$

(a) Show \mathcal{B}^{\star} is a σ-field.

Solution: Clearly $\Omega \in \mathcal{B}^{\star}$ since $\Omega=\Omega \cup \emptyset$ and $\Omega \in \mathcal{B}, \emptyset \in \mathcal{N}$. Let $C \in \mathcal{B}^{\star}$. Then, there exists sets $A \in \mathcal{B}$ and $M \in \mathcal{N}$ such that $C=A \cup M$. Since $M \in \mathcal{N}$, there exists a set $N \in \mathcal{B}$ such that $M \subset N$ and $P(N)=0$. Consider

$$
\begin{aligned}
C^{c} & =A^{c} \cap M^{c}=A^{c} \cap\left(N^{c} \cup\left(M^{c} \backslash N^{c}\right)\right) \\
& =\left(A^{c} \cap N^{c}\right) \cup\left(A^{c} \cap\left(M^{c} \backslash N^{c}\right)\right) .
\end{aligned}
$$

We know that $A^{c} \cap N^{c} \in \mathcal{B}$. Notice that $A^{c} \cap\left(M^{c} \backslash N^{c}\right) \subset M^{c} \backslash N^{c} \subset \Omega \backslash N^{c}$, and since $N^{c} \subset \Omega, P\left(\Omega \backslash N^{c}\right)=P(\Omega)-P\left(N^{c}\right)=0$, i.e. $\Omega \backslash N^{c}$ is a null set. Therefore, $A^{c} \cap\left(M^{c} \backslash N^{c}\right) \in \mathcal{N}$, and so $C^{c} \in \mathcal{B}^{\star}$. Now suppose $C_{1}, C_{2}, \ldots \in \mathcal{B}^{\star}$. Then there exists $A_{1}, A_{2}, \ldots \in \mathcal{B}$ and $M_{1}, M_{2}, \ldots \in \mathcal{N}$ such that $C_{n}=A_{n} \cup M_{n}$. Note

$$
\bigcup_{n=1}^{\infty} C_{n}=\left(\bigcup_{n=1}^{\infty} A_{n}\right) \bigcup\left(\bigcup_{n=1}^{\infty} M_{n}\right)
$$

Clearly $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$ since \mathcal{B} is a σ-field. Also, since $M_{n} \in \mathcal{N}$, there exists a null set $O_{n} \in \mathcal{B}$ such that $M_{n} \subset O_{n}$ and $P\left(O_{n}\right)=0$. Therefore, $\bigcup_{n=1}^{\infty} M_{n} \subset \bigcup_{n=1}^{\infty} O_{n}$ and by subadditivity

$$
P\left(\bigcup_{n=1}^{\infty} O_{n}\right) \leq \sum_{n=1}^{\infty} P\left(O_{n}\right)=0
$$

i.e. $\bigcup_{n=1}^{\infty} O_{n} \in \mathcal{B}$ and is null. Therefore, $\bigcup_{n=1}^{\infty} M_{n} \in \mathcal{N}$. This shows that $\bigcup_{n=1}^{\infty} C_{n} \in \mathcal{B}^{\star}$ and hence \mathcal{B}^{\star} is a σ-field.
(b) Show that if $A_{i} \in \mathcal{B}$ and $M_{i} \in \mathcal{N}$ for $i=1,2$ and

$$
A_{1} \cup M_{1}=A_{2} \cup M_{2},
$$

then $P\left(A_{1}\right)=P\left(A_{2}\right)$.
Solution: Notice that $A_{1} \cup M_{1}=A_{2} \cup M_{2}$ implies that $\left(A_{1} \cup M_{1}\right) \backslash M_{2} \subset A_{2}$, and so we know $A_{1} \backslash M_{2} \subset A_{2}$. Since $M_{2} \in \mathcal{N}$, there exists a null set $B_{2} \in \mathcal{B}$ such that $M_{2} \subset B_{2}$ and $P\left(B_{2}\right)=0$. Therefore, we have $A_{1} \backslash B_{2} \subset A_{1} \backslash M_{2} \subset A_{2}$. Now, consider by inclusion-exclusion

$$
P\left(A_{1} \backslash B_{2}\right)=P\left(A_{1} \cap B_{2}^{c}\right)=P\left(A_{1}\right)+P\left(B_{2}^{c}\right)-P\left(A_{1} \cup B_{2}^{c}\right)=P\left(A_{1}\right)+1-1=P\left(A_{1}\right) .
$$

Therefore, we have $P\left(A_{1}\right)=P\left(A_{1} \backslash B_{2}\right) \leq P\left(A_{2}\right)$. Reversing the first step to $A_{1} \supset$ $\left(A_{2} \cup M_{2}\right) \backslash M_{1}$ gives the result.
(c) Define $P^{\star}: \mathcal{B}^{\star} \rightarrow[0,1]$ by

$$
P^{\star}(A \cup M)=P(A), \quad A \in \mathcal{B}, M \in \mathcal{N} .
$$

Show that P^{\star} is an extension of P to \mathcal{B}^{\star}.
Solution: Let $B \in \mathcal{B}$. Then, $P^{\star}(B)=P^{\star}(B \cup \emptyset)=P(B)$. This shows P^{\star} is an extension of P to \mathcal{B}^{\star}.
(d) If $B \subset \Omega$ and $A_{i} \in \mathcal{B}, i=1,2$ and $A_{1} \subset B \subset A_{2}$ and $P\left(A_{2} \backslash A_{1}\right)=0$, then show $B \in \mathcal{B}^{\star}$.

Solution: Notice that $B=A_{1} \cup\left(B \backslash A_{1}\right)$. Also $B \backslash A_{1} \subset A_{2} \backslash A_{1}$ and $A_{2} \backslash A_{1}$ is null. Therefore, $B \in \mathcal{B}^{\star}$.
(e) Show \mathcal{B}^{\star} is complete. Thus every σ-field has a completion.

Solution: Let $A \in \mathcal{N}$. Then by definition of P^{\star},

$$
P^{\star}(\emptyset \cup A)=P(\emptyset)=0 .
$$

Since $A=\emptyset \cup A$, we have A is a null set in \mathcal{B}^{\star}. Therefore, \mathcal{B}^{\star} is complete.
(f) Suppose $\Omega=\mathbb{R}$ and $\mathcal{B}=\mathcal{B}(\mathbb{R})$. Let $p_{k} \geq 0$ and $\sum_{k} p_{k}=1$. Let $\left\{a_{k}\right\}$ be any sequence in \mathbb{R}. Define P by

$$
P\left(\left\{a_{k}\right\}\right)=p_{k}, \quad P(A)=\sum_{a_{k} \in A} p_{k}, \quad A \in \mathcal{B}
$$

What is the completion of \mathcal{B} ?
Solution: Let $A \subset \mathbb{R}$. Define the following two sets: $G=\left\{a_{k}: P\left(\left\{a_{k}\right\}\right)>0\right\}$ and $B=\left\{a_{k} \in A: P\left(\left\{a_{k}\right\}\right)>0\right\}$. First notice that $P(G)=1$ and also

$$
A=B \cup(A \backslash B)
$$

Clearly $B \in \mathcal{B}$ since it can be written as a countable union of measurable sets $\left\{a_{k}\right\}$. Also, since $A \backslash B \subset G^{c}$ and $P\left(G^{c}\right)=0$, we have $A \backslash B$ is a negligible set. Therefore, A is in the completion of \mathcal{B}. Since the set $A \subset \mathbb{R}$ was arbitrary, this implies that the completion of \mathcal{B} must be the power set of \mathbb{R}, i.e. $\mathcal{P}(\mathbb{R})$.
(g) Say that the probability space (Ω, \mathcal{B}, P) has a complete extension $\left(\Omega, \mathcal{B}_{1}, P_{1}\right)$ if $\mathcal{B} \subset \mathcal{B}_{1}$ and $\left.P_{1}\right|_{\mathcal{B}}=P$. The previous problem (c) showed that every probability space has a complete extension. However, this extension may not be unique. Suppose that $\left(\Omega, \mathcal{B}_{2}, P_{2}\right)$ is a second complete extension of (Ω, \mathcal{B}, P). Show that P_{1} and P_{2} may not agree on $\mathcal{B}_{1} \cap \mathcal{B}_{2}$.

Solution: Let $\Omega=\{1,2,3\}$ and consider the σ-field $\mathcal{B}=\{\emptyset,\{1\},\{2,3\}, \Omega\}$ where $P(\{1\})=1 / 2$ and $P(\{2,3\})=1 / 2$. Now, define the extensions $\mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{P}(\Omega)$, which are both complete because the only negligible set is the empty set which is trivially null. However, if we define the probabilities

$$
\begin{array}{ll}
P_{1}(\{1\})=1 / 2 & P_{2}(\{1\})=1 / 2 \\
P_{1}(\{2\})=1 / 4 & P_{2}(\{2\})=1 / 3 \\
P_{1}(\{3\})=1 / 4 & P_{2}(\{3\})=1 / 6
\end{array}
$$

we see that P_{1} and P_{2} do not agree on $\mathcal{B}_{1} \cap \mathcal{B}_{2}$ since, say, $P_{1}(\{2\}) \neq P_{2}(\{2\})$. Note that these values were chosen so that $P(\{1\})=P_{1}(\{1\})=P_{2}(\{1\})$ and also $P(\{2,3\})=$ $P_{1}(\{2,3\})=P_{2}(\{2,3\})$, where $P_{i}(\{2,3\})=P_{i}(\{2\})+P_{i}(\{3\})$ for $i=1,2$.
(h) Is there a minimal extension?

Solution: We will show that $\left(\Omega, \mathcal{B}^{\star}, P^{\star}\right)$ is the minimal complete extension. Let $\left(\Omega, \mathcal{B}^{\prime}, P^{\prime}\right)$ be another complete extension of (Ω, \mathcal{B}, P). Then any set $M \in \mathcal{N}$ is a null set in \mathcal{B}^{\prime}, i.e. $\mathcal{N} \subset \mathcal{B}^{\prime}$. Also, clearly $\mathcal{B} \subset \mathcal{B}^{\prime}$ since \mathcal{B}^{\prime} is an extension. Now, take any $B \in \mathcal{B}^{\star}$, i.e. $B=A \cup M$ where $A \in \mathcal{B}$ and $M \in \mathcal{N}$. Since $\mathcal{B} \subset \mathcal{B}^{\prime}$ and $\mathcal{N} \subset \mathcal{B}^{\prime}$, we have $A, M \in \mathcal{B}^{\prime}$ and so too is $A \cup M$. Thus, $B \in \mathcal{B}^{\prime}$ and we conclude that $\mathcal{B}^{\star} \subset \mathcal{B}^{\prime}$. Therefore, $\left(\Omega, \mathcal{B}^{\star}, P^{\star}\right)$ is the minimal extension.

